Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emerg Infect Dis ; 29(3): 569-575, 2023 03.
Article in English | MEDLINE | ID: covidwho-2231947

ABSTRACT

We estimated comparative primary and booster vaccine effectiveness (VE) of SARS-CoV-2 Omicron BA.5 and BA.2 lineages against infection and disease progression. During April-June 2022, we implemented a case-case and cohort study and classified lineages using whole-genome sequencing or spike gene target failure. For the case-case study, we estimated the adjusted odds ratios (aORs) of vaccination using a logistic regression. For the cohort study, we estimated VE against disease progression using a penalized logistic regression. We observed no reduced VE for primary (aOR 1.07 [95% CI 0.93-1.23]) or booster (aOR 0.96 [95% CI 0.84-1.09]) vaccination against BA.5 infection. Among BA.5 case-patients, booster VE against progression to hospitalization was lower than that among BA.2 case-patients (VE 77% [95% CI 49%-90%] vs. VE 93% [95% CI 86%-97%]). Although booster vaccination is less effective against BA.5 than against BA.2, it offers substantial protection against progression from BA.5 infection to severe disease.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Portugal , Cohort Studies , SARS-CoV-2 , Disease Progression
2.
Front Pharmacol ; 11: 625, 2020.
Article in English | MEDLINE | ID: covidwho-824962

ABSTRACT

The transport through the nuclear pore complex is used by cancer cells to evade tumor-suppressive mechanisms. Several tumor-suppressors have been shown to be excluded from the cell nucleus in cancer cells by the nuclear export receptor CRM1 and abnormal expression of CRM1 is oncogenic. Inhibition of CRM1 has long been postulated as potential approach for the treatment of cancer and to overcome therapy resistance. Furthermore, the nuclear export of viral components mediated by the CRM1 is crucial in various stages of the viral lifecycle and assembly of many viruses from diverse families, including coronavirus. However, the first nuclear export inhibitors failed or never entered into clinical trials. More recently CRM1 reemerged as a cancer target and a successful proof of concept was achieved with the clinical approval of Selinexor. The chemical complexity of natural products is a promising perspective for the discovery of new nuclear export inhibitors with a favorable toxicity profile. Several screening campaigns have been performed and several natural product-based nuclear export inhibitors have been identified. With this review we give an overview over the role of CRM1-mediated nuclear export in cancer and the effort made to identify and develop nuclear export inhibitors in particular from natural sources.

SELECTION OF CITATIONS
SEARCH DETAIL